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SUMMARY 

A novel, unified molecular theory of chromatography is applied to derive 
equations for gas-liquid chromatography (GLC) and to treat representative GLC 
problems involving the interpretation and prediction of absolute retention (partition 
coefficients), the effect of the molecular weight of the stationary liquid phase on 
relative retention, and the isolation and quantitation of functional-group (energetic) 
contributions to retention. The utility and efficacy of this new theoretical approach to 
GLC are thereby demonstrated. 

INTRODUCTION 

A unified molecular theory of fluid-liquid (absorption) chromatography, 
encompassing gas, liquid and supercritical-fluid mobile phases, has recently been 
developed’. This comprehensive theory, which is based on a lattice-fluid (or 
Ising-fluid) mode1 and statistical thermodynamics is applied in the present paper to 
treat more rigorously several representative problems in gas-liquid chromatography 
(GLC) with a single-component stationary liquid phase (solvent): (1) the interpreta- 
tion and prediction of absolute retention for simple, alkane solute plus alkane solvent 
systems; (2) the effect of the molecular weight (or chain length) of the solvent on solute 
relative retention and, cognately, the use of GLC for the determination of solvent 
molecular weight; (3) the isolation and quantitative assessment of functional-group 
(energetic) contributions to solute retention. The following derivations and analyses 
are intended to be indicative rather than exhaustive. 

THEORY 

In the lattice-fluid model’,‘, expansion (compression) effects, configurational 
entropy, and attractive and repulsive interactions are rigorously taken into account 
using the Bragg-Williams (random-mixing) approximation. In this mode1 a molecule 
of component i is taken to consist of ri segments, where ri is proportional to the 
hard-core or van der Waals volume of the molecule. The attractive interaction energy 
between nearest-neighbor segments on molecules i and j is designated by sij, where, 
adopting the Sanchez-Lacombe (SL) convention2 here, sij > 0. Also, for a given pure 
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component (j= i), the segmental pair interaction energy, &ii, is related to the SL reduced 
temperature of that component, F’i:i, by’,2 

where z is the coordination number of the lattice, k, is the Boltzmann constant, Tis the 
absolute temperature, and P”, the characteristic temperature of component i (a scale 
parameter, not to be confused with the critical temperature), is proportional to Eiie 

Similarly, the SL reduced density of pure component i, $i, is related to the 
experimental, pure-component density, pp, by’*2 

where p: is the characteristic density of component i (the close-packed density; another 
scale parameter, not to be confused with the critical density) and 0: is the occupied 
volume fraction of pure i. 

In the following treatment, the subscripts a, b, c and d denote, respectively, 
solute molecules containing other functional groups in addition to paraffinic ones 
(a = “active” solute), paraftinic solute molecules (b = “reference” solute), solvent 
molecules containing other functional groups in addition to paraffinic ones (c = 
“active” solvent), and parafftnic solvent molecules (d = “reference” solvent). Eqn. 39 
(or 40) in ref. 1 describes the distribution constant (partition coefficient), K, for ideal 
GLC (strictly, the value obtained by extrapolation to zero column pressure). 
Substituting $i for 0: and using the convention Eij > 0 [rather than aij < 0 (ref. l)], the 
equation for the reference system (solute b + solvent d) becomes 

In h(d) = rb[(Z&bd/k$#d - (Z&dd/%iT)j% - (1 - rdl)?dl (3) 

It sensibly predicts that K, hence the specific retention volume, will increase with 
increasing &, increasing &bd and decreasing Ed& and dearly shows that K depends on 
both T and &, where the latter governs the average distance between molecules (and 
non-bonded molecular segments) in the stationary phase. Note that the last term, 
-rb(l - r; ‘)r)d, is the configuration entropy contribution to In K. 

Introducing eqn. 1 into eqn. 3, one obtains an expression in terms of the reduced 
variables of the solvent component: 

h Kb(d) = rb[2(&bd/&dd)(?)d/fdd) - %/pdd) - c1 - rbl)?dl (4) 

Allowing for a deviation from the geometric-mean approximation for sbd, one has 

&bd = @bb&dd)“‘(l + I]bd) (5) 

where &, which reflects the deviation, is expected to be small with respect to unity. 
Substituting eqns. 1 and 5 into eqn. 4, one obtains 

h Kb(d) = rb[(2/Ft’2) (1 + I]bd) ($d/%‘2) - @dz/FdTd) - (I - ri ‘@dl 
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which may be written as follows: 

where 

A = (2p&“) (8) 

B = (fi:/%) + (1 - rd ‘) @d) (9) 

Note that A and B depend only on properties of the pure solvent. Therefore, if the 
molecular-size parameters rb and r d, and the reduced variables i?d, Fd and i+b are 
known, and the binary molecular parameter qbd can be determined, then it should be 
possible to utilize eqn. 6 (or eqns. 7-9) for the prediction of absolute partition 
coefficients of alkane solutes in alkane solvents. The feasibility of this approach will be 
investigated in the next section. 

It follows from eqn. 4 that, for the system (solute a + solvent d), one can write 

In &d) = ra[2(Ead/Edd) (?d/Fd:d) - ($/pdd) - (1 - rd ‘)?dl (10) 

If one now chooses a and b such that r, z rb (vide infra), then eqns. 4 and 10 give 

ln[Ka(d)/KbCdjl = In %/b)(d) x 2rb[(&ad/&dd) - (&bd/&dd)l [?d/pddl (11) 

where &b)(d) is the relative retention of solutes a and b in solvent d. Note that eqn. 11 
predicts that R will increase with increasing rb, increasing &,d, decreasing &bd, increasing 
fid and decreasing Fd. Also, a modified geometric-mean expression, similar to eqn. 5, 
can be written for &,& 

Ead = (&,a&dd)1’2( 1 + bd) (12) 

Applying eqns. 1, 5 and 12 to eqn. 11 yields 

In RWW@) = 2rb([(l + qad)/Fi’li2] - [(I + Y]bd)/~~‘21) (fid/%‘2) (13) 

Eqn. 13 describes, in terms of the reduced temperatures of the pure components, 
the reduced density of the solvent component and three molecular parameters, rb, &d 
and &,d, the relative retention of an “active” solute and a “reference” solute in a given 
“reference” solvent. It will be applied in the next section to examine the dependence of 
this relative retention on the molecular weight (or chain length) of n-alkane solvents. 

From eqns. 1 and 11: 

In &a/t.)(d) = ra#BT) hd - &bd) (+d) (14) 

where rb has now been replaced by ra( 5% rb). Similarly, the relative retention of solutes 
a and b in an “active” solvent (c), R,,,,,,,,, is given by 
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In RW)(c) = r,(z/‘bT) (&a, - &bc) (i&j (15) 

If one chooses solvents c and d such that PC x bd [solvents having comparable chain 
lengths (r, x rd) and expansion coefftcients’,2], then subtracting eqn. 14 from eqn. 15 
yields 

In[R~,/b,(c)/R~a/b)(d~l = In Q = r.&/bT) bat - &bc - &ad + &bd) (bd) (16) 

where Q is the ratio of two relative retention quantities. 
Recalling the nature of molecules a, b, c and d, and assuming that the “active” 

solute molecules (a) consist of type-p (parafftnic) and type-x chemical groups and the 
“active” solvent molecules (c) consist of type-p and type-y chemical groups, while the 
“reference” molecules (b and d) consist only of type-p groups, the sij values in eqn. 16 
may be decomposed as follows3*4: 

&bd = &pp (174 

(17c) 

where &k[ (k,l = p,x,y) now denotes the attractive interaction energy, per unit SegIIXnt, 

between type-k and type-l moieties on adjacent molecules, and fjk (j = a,b,c,d; 
k = p,x,y) denotes the fraction of a molecule of type-j that contains type-k functional 
groups. Note that the number of segments on moleculej containing type-k moieties, 
rjk, is related to fjk by 

rjk = fjkrj (W 

Fjk = vjkrj = rj WW 

wheref,, + fax = l,fc, + fc, = i,fbp = 1 and fdp = 1. 
Use of eqns. 17 and 28 in eqn. 16 leads to, after much algebra 

ln[R(a/b)(c)/R~alb)(d~l = In Qxy = @d) (r&f&) (z/b~T) (Exy - Epy - Epx + Epp) (19) 

Since rtX = rax and fc, = rcy/rc x rcy/rd (eqn. 18), then eqn. 19 may be written as 

where the first subscript on rax and rcy has become unnecessary and been deleted, and 

Awkl = Ekl - @kk + &d/2 (21) 
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where Awkl is the interchange energy for the formation of a k-l pair interaction’. 
Inspection of eqn. 20 reveals that, provided ra z rb, r, z rd and fit z $d, Q should 
have the same value whether type-x groups are located on solute a and type-y groups 
on solvent c, or vice versa; that is, Q should exhibit solute-solvent invariance (QXY z 
QYX). Therefore, writing eqn. 22 in terms of interaction parameters’, Xkl, one obtains 

ln Qxy z ln Qyx = @d) (rxry/rd)(xpx + XPY - xX,) (22) 

where 
Xkl = -(z/ksT)Awkl (23) 

To continue, if the “active” solute (a) and solvent (c) molecules have common 
functionality (y = x or x = y), then xpX = xpy and xXy = 0 (ref. 3) and from eqn. 24 

ln Qxx x (cd) @zbd) c2xpx) (24) 

ln Qw = (cd) #/rd) (2xp~) (25) 

Eqns. 24 and 25 thus permit the characterization of px and py interactions. 
Substituting these equations into eqn. 22 gives 

In Qxy w In QyX x (rY/2rX)ln Qxx + (r@y)ln QYY - (?d)(rxry/rd)xxy (26) 

which permits the characterization of xy interactions and the testing of solute-solvent 
invariance. 

Eqns. 24-26 will be applied in the next section to isolate and quantify functional 
group contributions to solute retention. It is important to note that products such as 
(r$y/rd)&y regularly appear in theoretical (lattice-model) expressions for Solute activity 
coefficients, absolute and relative partition coefftcients in gas and liquid chromatogra- 
phy, as well as hydrocarbon-water bulk partition coefftcients3*4. Also, an additional 
novel feature of the theory presented above is the emergence of the factor j!?d in the 
various equations (e.g., eqns. I1 and 13, and eqns. 24-26). This factor, which does not 
appear in earlier (incompressible) lattice-model results, explicitly accounts for the 
effect of the degree of expansion (or free volume) of the stationary liquid on solute 
retention. 

APPLICATIONS 

We start by considering the application of eqn. 6 (or eqns. 7-9) to the 
interpretation and prediction of absolute retention [K,,(d)] for relatively SiInpk alkane 
solute (b) +n-alkane solvent (d) systems. As will become evident, the first term in this 
equation (retention-enhancing contribution from solute-solvent interactions) is 
comparable in magnitude to, but greater than, the sum of the second and third terms 
(retention-diminishing contributions from solvent-solvent interactions and conligura- 
tional entropy, respectively) for the systems in question. 

The initial test systems are six alkane solutes in n-CZ4Hso at 8O.O‘C. Listed in 
Table I are the rb and fb values of the solutes (from the Sanchez-Lacombe tabulation2) 
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TABLE I 

ANALYSIS OF PARTITION COEFFICIENTS, Kwd,, OF ALKANE SOLUTES (b) IN n-Cz4HS0 (d) AT 
8O.O”C 

Solute b” Kw f&d) 
(experimental)b (calculated)’ 

n-Hexane 8.37 0.7416 61.9 61.5 

n-Heptane 9.57 0.7248 146.6 148.2 

n-Octane 10.34 0.7032 339.1 336.2 

n-Nonane 11.06 0.6828 783.0 783.2 

2,2_Dimethylbutane 8.10 0.7759 35.9 35.7 

2,3-Dimethylbutane 8.29 0.7624 46.5 46.8 

’ From ref. 2. 
* From ref. 5. 

’ Calculated from eqn. 30, with 9 w = - 0.020 for the normal alkane solutes and vW = -0.0 17 for 
the branched alkane solutes. 

and the GLC partition coefficients ‘. The scale parameters (~2 and n) needed to 
evaluate j5d/FA’2 (hence, fii/Fd) are not directly available for n-C24H50. However, since 
r* and p* values have been tabulated for n-CsH14 through n-C14HS0 (ref. 2), &JpA” 
was determined as a function of n-alkane molecular weight, Md, by fitting this 
available data to the form 

The 
E= 

~d/2y2 = c - [D/(Md + E)] (27) 

optimum correlation coefficient (0.9990) is obtained with the assignment 
121.4, giving C = 1.3477 and D = 91.628: 

fi&” = 1.3477 - [91.628/(Md + 121.4)] (28) 

By extrapolation to Md = 338.6, eqn. 28 gives pd/Fj” = 1.1485 andj5$Fd = 1.3191 
for n-Cz4HS0 at 80°C. Similarly, the value of (1 - ra’)Jd is obtained by fitting 
available data’ for the n-alkanes as a function of Mi 1 and then extrapolating to 
Md = 338.6: 

(1 - ra ‘)6d = 0.8422 - (13.290/M,) (29) 

with a correlation coefficient of 0.9997, giving (1 - rdl)pd = 0.8030 for n-Cz4HS0 at 
80°C. 

Accordingly, from eqns. 7-9 we have A = 2.2970, B = 2.1221 and 

In Kbcdj = rb{[2.2970(1 + Q)/~~‘~] - 2.1221) (30) 

Using eqn. 30, the best fit to the experimental K b(d) values is found by letting 
rjbd = -0.020 for the normal alkane solutes and qbd = -0.017 for the branched 
alkane solutes, indicating slight negative deviations from the geometric-mean 
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TABLE II 

PREDICTION OF PARTITION COEFFICIENTS, Z&, OF ALKANE SOLUTES IN wC~,,H~~ AND 
wC~~H,~ AT 8O.o”C 

Solute h_CWHGl 

Experimental” Predicted b 

n-C3&,4 

Experimental” Predicted b 

n-Hexane 57.0 56.7 52.8 53.2 

n-Heptane 134.1 136.2 125.3 127.3 

n-Octane 317.5 310.2 289.6 290.8 

n-Nonane 728.2 127.2 684.8 684.5 

2,2-Dimethylbutane 32.9 32.1 30.6 30.5 

2,3-Dimethylbutane 43.2 43.1 39.9 40.2 

a From ref. 5. 

b Calculated from eqns. 3 1 and 32, respectively, with nba = -0.020 for the normal alkane solutes 
and rlM = -0.017 for the branched alkane solutes, and using the rb and Ft, values from Table I. 

approximation for &bd. The goodness of this tit is seen in Table I, where where the 
average difference between the experimental and calculated &(d) values is only 0.6%. 

As a preliminary test of the predictive ability of this approach, the same 
procedure as that leading to eqn. 30 is applied to KZ-C~,,H~~ and n-C36H74 at 80°C. 
From eqns. 7-9, 28 and 29, one obtains for the two respective solvents 

In j&,(d) = r,([2.3587(1 + &d)/Fi’*] - 2.2016) (31) 

In &(d) = r,{[2.4038(1 + $,d)/?+i’*] - 2.2606) (32) 

Shown in Table II is a comparison of the experimental and predicted &(d) values for 
the same set of solutes. The average difference between the two is less than 0.8%. 

Let us now apply eqn. 13 to the analysis of the partition coefficient of 
chlorobenzene (a) relative to n-hexane (b) in the three n-alkane solvents. Listed in 
Table III are the R~albj(dJ values of the solute pair5 and the &.fd values of the solvents. 

TABLE III 

ANALYSIS OF PARTITION COEFFICIENTS OF CHLOROBENZENE (a) RELATIVE TO 
NORMAL HEXANE (b), R<a,sn,,), IN NORMAL ALKANE SOLVENTS AT 8O.O”C 

Solvent R w/b)(d)’ Rww) 
(calculated)b 

MdC Md 
(calculated)d 

n-C2Jbo 6.531 6.526 338.6 339.1 
n-C,oH,z 6.850 6.863 422.8 419.1 

n-C36H74 7.128 7.120 507.0 509.8 

a Experimental data from ref. 5. 
b Calculated using actual Md values and eqns. 33 and 34, with tlad = -0.040. 
’ Molecular weight (g/mol). 
d Calculated from experimental RCaibjtdb values and eqns. 33 and 34, with qad = -0.040. 
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For the solutes, ra = 8.38 (ref. 2) and rb = 8.37, thus clearly satisfying the condition 
*, z rb. Also, F= = 0.6034 (ref. 2), pb = 0.7416, qbd = - 0.020 and &,/FA” is given by 
eqn. 28, leaving qad as the only unknown. (Here, both &, and ?)bd are assumed to be 
independent Of &fd.) 

It follows from eqns. 13 and 28 that &b)(d) must have the form 

ln &,b)(d) = F(1.3477 - [91.628/(Md + 121.3)]} (33) 

where 

F = 2.4998 + 21.5494q,d (34) 

The determination of qad is therefore accomplished by finding the F value that best 
satisfies eqn. 33. (The goodness of the lit is evident from comparison of the second and 
third columns in Table III). From the result (F = 1.6332) and eqn. 34 one calculates 
&,d = -0.040, indicating a small, but more negative (compared to Y]bd), deviation 
from the geometric-mean approximation for &&+ Additional physical insight is 
obtained by noting that the dependence of &lb)(d) on Md Stems Solely from &/Fi’2, i.e., 
the increase in &b)(d) with increasing &fd at fixed T (Table III) is primarily due to the 
increase in bd (decrease in the molar free volume and the average distance between 
molecular segments) with increasing Md. 

In addition to its predictive and interpretive aspects, the utility of this approach 
is that once the solute pair and solvent series have been characterized, eqns. 33 and 34 
can then be employed to determine &fd for any solvent in the series by measuring 
&b)(d) in that solvent 6. The precision of such a determination of Md for high- 
molecular-weight n-alkanes (and, presumably, the number average &fd for linear 
polyethylenes) may be estimated by subjecting eqn. 33 to a propagation-of-errors 
analysis6, yielding 

(t,M,/k&) = [(hf,, + 121 .4)2/91 .628&] (a~/@ (35) 

where c,,$/Md and aR/R are the fractional errors in Md and Rtalbjtdj, respectively. With 
an estimate of OR/R = 0.001 (ref. 6), eqn. 35 gives the following per cent errors in Md: 
Md = 500 (0.5%; See Table III), Md = 5000 (3.5%), &fd = 10 000 (6.8%) and Md = 
20 000 (13.5%). Therefore, the per cent error increases with increasing Md, but 
remains tolerable ( < 10%) for Md values up to cu. 1.5 . 104. Based on the form of eqn. 
13, it is anticipated that an equation having the same general form as eqn. 33 should 
apply to other solvent series, including polymeric ones. 

Finally, we give an example of the application of Eqns. 24-26 to isolate and 
quantify functional-group energetiCS, as measured by &(rkrI/r&,,l, where k, 1 = x, 
y and m = p (k = I) or m = k (k # r). Listed in Table IV are the n-alkyl chloride (a or 
c) and di-n-alkyl thioether (a or c) systems under consideration and the experimental 
values of In Qkr at 4O.O”C (ref. 7). The reference solute (b) and solvent (d) are n-&HI6 
and ~z-C~~H~~, respectively. From Bondi’s tabulation of group van der Waals 
volumess it is seen that rs x rcI z rCH,. Therefore, rk % rI, r, x rb and rc z rd, as 
required. Also, from density measurements on the active and reference solvents it is 
found that fit z & (ref. 7). Accordingly, the conditions leading to the derivation of 
eqns. 24-26 are satisfied. 
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TABLE IV 

ANALYSIS OF FUNCTIONAL GROUP ENERGETICS AT 4O.O”C 

Solute (a)-solvent (c)” k I tn In Qlrl A (wlrd) xd 

Di-n-propyl thioether-di-n-octyl thioether x x p 0.350 0.175’ 

n-Hexyl chloride-n-hexadecyl chloride Y Y P 0.386 0.193* 

Di-n-propyl thioether-n-hexadecyl chloride x y x 0.384 -0.016’ 

n-Hexyl chloride-&n-octyl thioether Y x Y 0.386 -0.018’ 

’ Reference solute (b): n-C,Hi,g reference solvent (d): n-Ci7Hs6. 
b Experimental data from ref. 7. 
’ Calculated from eqn. 24. 
d Calculated from eqn. 25. 
e Calculated from eqn. 26, with ri z ry. 

As is evident from the results in the last column of Table IV, paraffin-sulfur (px), 
paraffin-chloride (py), sulfurchloride (xy) and chloride-sulfur (yx) energetics can be 
readily characterized, and solute-solvent invariance is confirmed (xX, x xYX). The 
unfavourable energetics associated with the paraffin segment-“active” segment 
interchange process (eqn. 23, with k = p and 1 = x or y) leads to the expected positive 
values of xpX and xpY. However, the energetics of the S + Cl pairing is nearly ideal 

~d(~x~ylrd)~xy x -0.0171. An estimate of the absolute value of xXY may be obtained by 
using Bondi’s data’ (from which, rxry/rd E 0.693) and the Sanchez-Lacombe 
tabulation2 (from which, & x 0.868), giving xX,. z - 0.028. Similar estimates yield 

XPX z 0.313 (x = S) and xpY z 0.299 (y = Cl). In the same manner the energetics of 
other functional groups can be quantified. 

CONCLUSIONS 

As mentioned at the outset, the derivations and analyses presented above were 
meant to be representative rather than exhaustive. Certainly, additional and more 
complex chemical systems need to be evaluated, and the dependence of retention on 
the reduced temperature and reduced density of the stationary liquid phase needs to 
more thoroughly studied. Nevertheless, the utility, efficacy and promise of this new 
theoretical approach have been demonstrated. 
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